Machine Learning Solutions Engineer
Our team bridges the gap between machine learning capabilities and user-facing products. We transform advanced ML technologies into valuable features that solve real customer problems. We're looking for a skilled Machine Learning Solutions Engineer who can work at the intersection of ML research, engineering, and product development to build production-ready AI systems that deliver measurable business value. If you're excited about making ML models work in real-world applications and can collaborate effectively across technical and non-technical teams, we'd love to talk with you!
As a Machine Learning Solutions Engineer, you'll play a crucial role in our ML product development lifecycle. You'll collaborate with ML researchers, software engineers, product managers, and designers. You'll be responsible for prototyping ML-powered features, evaluating their technical feasibility and business impact, and guiding the implementation process.
In this role, you will build proof-of-concepts that demonstrate ML capabilities in practical contexts, develop strategies for measuring product value, design effective evaluation frameworks, and help create seamless transitions between different ML models as technologies evolve. You'll need to think holistically about how ML systems fit into larger product ecosystems and user workflows.
You will be successful in our team if you enjoy solving complex technical problems with a product mindset, can communicate effectively with diverse stakeholders, and thrive at finding the right balance between ML performance and product requirements. This role requires both technical depth and the ability to see the big picture of how ML creates value for users.
- Bachelor's degree in Computer Science, Machine Learning, or a related technical field
- 5+ years of industry experience with 2+ years of experience integrating ML capabilities into software products
- Experience gathering and synthesizing customer feedback to inform ML product development and feature prioritization
- Demonstrated ability to translate user needs into technical requirements for ML solutions
- Strong programming skills in Python and experience with ML frameworks
- Experience with prototyping, measuring, and iterating on ML-powered features
- Experience with Large Language Models (LLMs) and understanding how to effectively integrate them into products
- Practical knowledge of Retrieval Augmented Generation (RAG) systems and their applications
- Experience designing and implementing ML evaluation frameworks that connect to product success metrics
- Familiarity with A/B testing and experimental design for ML features
- Background in developing successful POC-to-production rollout strategies for ML features
- Experience collaborating with cross-functional teams including product management, design, and engineering
- Demonstrated ability to balance technical trade-offs with product requirements
- Excellent communication skills with the ability to explain technical concepts to non-technical stakeholders
Apple is an equal opportunity employer that is committed to inclusion and diversity. We seek to promote equal opportunity for all applicants without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability, Veteran status, or other legally protected characteristics. Learn more about your EEO rights as an applicant.